Novel mutations in Lrp6 orthologs in mouse and human neural tube defects affect a highly dosage-sensitive Wnt non-canonical planar cell polarity pathway.
نویسندگان
چکیده
Wnt signaling has been classified as canonical Wnt/β-catenin-dependent or non-canonical planar cell polarity (PCP) pathway. Misregulation of either pathway is linked mainly to cancer or neural tube defects (NTDs), respectively. Both pathways seem to antagonize each other, and recent studies have implicated a number of molecular switches that activate one pathway while simultaneously inhibiting the other thereby partially mediating this antagonism. The lipoprotein receptor-related protein Lrp6 is crucial for the activation of the Wnt/β-catenin pathway, but its function in Wnt/PCP signaling remains largely unknown. In this study, we investigate the role of Lrp6 as a molecular switch between both Wnt pathways in a novel ENU mouse mutant of Lrp6 (Skax26(m1Jus)) and in human NTDs. We demonstrate that Skax26(m1Jus) represents a hypermorphic allele of Lrp6 with increased Wnt canonical and abolished PCP-induced JNK activities. We also show that Lrp6(Skax26-Jus) genetically interacts with a PCP mutant (Vangl2(Lp)) where double heterozygotes showed an increased frequency of NTDs and defects in cochlear hair cells' polarity. Importantly, our study also demonstrates the association of rare and novel missense mutations in LRP6 that is an inhibitor rather than an activator of the PCP pathway with human NTDs. We show that three LRP6 mutations in NTDs led to a reduced Wnt canonical activity and enhanced PCP signaling. Our data confirm an inhibitory role of Lrp6 in PCP signaling in neurulation and indicate the importance of a tightly regulated and highly dosage-sensitive antagonism between both Wnt pathways in this process.
منابع مشابه
Convergent extension analysis in mouse whole embryo culture.
Mutations have been identified in a non-canonical Wnt signalling cascade (the planar cell polarity pathway) in several mouse genetic models of severe neural tube defects. In each of these models, neurulation fails to be initiated at the 3-4 somite stage, leading to an almost entirely open neural tube (termed craniorachischisis). Studies in whole embryo culture have identified a defect in the mo...
متن کاملLRP6 exerts non-canonical effects on Wnt signaling during neural tube closure.
Low-density lipoprotein receptor related protein 6 (Lrp6) mutational effects on neurulation were examined using gain (Crooked tail, Lrp6(Cd)) and loss (Lrp6(-)) of function mouse lines. Two features often associated with canonical Wnt signaling, dorsal-ventral patterning and proliferation, were no different from wild-type (WT) in the Lrp6(Cd/Cd) neural tube. Lrp6(-/-) embryos showed reduced pro...
متن کاملInteraction of viral oncogenic proteins with the Wnt signaling pathway
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...
متن کاملComparative integromics on non-canonical WNT or planar cell polarity signaling molecules: transcriptional mechanism of PTK7 in colorectal cancer and that of SEMA6A in undifferentiated ES cells.
Non-canonical WNT and planar cell polarity (PCP) are overlapping but distinct signaling pathways, which control convergent extension, neural tube closure, orientation of cilia and sensory hair cells, axon guidance, and cell motility. Non-canonical WNT signals, regulated by the interaction of WNT, WNT antagonist, Frizzled and ROR2, are transduced to JNK, ROCK, PKC, MAP3K7, and NFAT signaling cas...
متن کاملPTK7 modulates Wnt signaling activity via LRP6.
Protein tyrosine kinase 7 (PTK7) is a transmembrane protein expressed in the developing Xenopus neural plate. PTK7 regulates vertebrate planar cell polarity (PCP), controlling mesodermal and neural convergent-extension (CE) cell movements, neural crest migration and neural tube closure in vertebrate embryos. Besides CE phenotypes, we now show that PTK7 protein knockdown also inhibits Wnt/β-cate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 23 7 شماره
صفحات -
تاریخ انتشار 2014